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Coherent beam-beam tune shift of unsymmetrical beam-beam interactions was studied experimentally and
numerically in HERA, where the lepton beam has such a large beam-beam parapétef, =0.272 that the
single-particle motion is locally unstable at the origeiosed orbit. Unlike the symmetrical case of beam-
beam interactions, the ratio of the coherent beam-beam tune shift and the beam-beam parameter in this
unsymmetrical case of beam-beam interactions was found to decrease monotonically with an increase of the
beam-beam parameter. The results of self-consistent beam-beam simulation, the linearized Vlasov equation,
and the rigid-beam model were compared with the experimental measurement. It was found that the coherent
beam-beam tune shifts measured in the experiment and calculated in the simulation agree remarkably well but
they are much smaller than those calculated by the linearized Vlasov equation with the single-mode approxi-
mation or the rigid-beam model. The study indicated that the single-mode approximation in the linearization of
the Vlasov equation is not valid in the case of unsymmetrical beam-beam interactions. The rigid-beam model
is valid only with a small beam-beam parameter in the case of unsymmetrical beam-beam interactions.
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[. INTRODUCTION tunes and the lattice tunes are the coherent beam-beam tune

- hi bstantial i £ luminositv i shifts [1,3,4]. Over decades, many studies have been con-
0 achieve a substantial increase ot UMINosity I 8y, ctaq on the relationship between the coherent beam-beam

storage-ring collider, limited options include increase ofy e ghift and the beam-beam parameter that measures the

bunch currents, reduction of beam sizes at interaction po'nt§trength of the beam-beam interacti@-13. Two theoreti-

(.IPs), and increase of thg numb_er of colliding bunches. The,, models, the linearized Vlasov equatidj and the rigid-

first two measures unavoidably increase head-on beam-begg , ., mode[5], have been studied extensively for cases of

forces which could lead to collectiveoherent beam-beam

. bilities[1 2 q di t coh b b fweak beam-beam perturbation in which the beam-beam pa-
instabilities[1,2]. Understanding of coherent beam-beam e “rameter is relatively small. When the two beams have the

fects _espeC|aIIy in the npnl!near_ regime 1s t_he_refore of PMsame or very close lattice tunes, the calculation of the coher-
mary importance f(_)r aphleV|ng high luminosity in a storage-gnt heam-beam tune shift based on the linearized Viasov
ring collider with high-intensity beams. equation with the single-mode approximation agrees with

To .study the coherent beam—beam effect, one importa eam measurements and computer simulatid@s6,7. The
quantity that can be measyred experlmentally is the pohererlj- id-beam model is inconsistent with the linearized Vlasov
beam-beam tune shift. Without beam-beam interactions an quation and was therefore proven to be wrong by beam

without consflder;)ng nonlme_lelmues in the Iallttlcg,ht?e WO measurements in this cap®,7]. When the two beams have
counter-rotating beams oscillate transversely with frequengq itterent lattice tunes, on the other hand, the calculation

cieg t.hat .correspon(.j o lattice tunétxete_ltron tunes without a<ed on the rigid-beam model provides a good agreement
polhsmn) if they de""”?‘e fro'm plosg orbits. With beam-beam s, heam measuremen(§,8,14. In both of these models,
interactions, the particle distributions of the beams are per;

bed and | ith ti di he VI the equilibrium beam distributions were assumed to be
turbed and evolve with time according to the Vlasov equag,ssian distributions for easing the calculations. In the case
tion [1]. The dynamics of the beams could therefore be com

i db timod i tthe b distributi of weak beam-beam perturbation, this assumption is fairly
plicated by multimode oscillations of the beam distrioutions. ;4 a5 the heams were observed to stay close to a Gaussian.

When considering only thg stgble oscillation of beam cen- The situation of strong beam-beam perturbations with a
troids (coherent dipole oscillation the frequency spectrum relatively large beam-beam parameter is much more compli-

of the beam-centroid oscillation has two primary freqUenci€g5ied and less understood. When the beam-beam parameter
fo.r each degree .Of freedom of the transverse motion. The,st?xceeds a threshold, the beam-beam interaction could induce
primary frequencies correspond to the tunes measured during oo qtic coherent beam-beam instability. After the onset of
collision. The differences between these measured coII|S|o[he instability, the closed orbits could become unstable for
the beam centroids and two beams could develop a sponta-
neous unstable coherent oscillatigh15]. When the beam-
*Corresponding author. FAX: 785-864-5262; Email addressbbeam parameter is below the beam-beam threshold, the co-

jshi@ku.edu herent beam oscillation is stable. It is, however, not clear
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whether the linearized Vlasov equation or the rigid-beanThe coherent beam-beam tune shifts calculated from the lin-
model are still valid in the regime of strong beam-beam perearized Vlasov equation with the single-mode approximation
turbation. As many efforts are being made to further increasevere also found to be significantly different from the result
the beam-beam parameter in upgrades of current and devejf the beam experiment and beam simulation regardless of
opments of future storage-ring colliders, an understanding ojyhether the beam-beam parameter is large or small. As the
the coherent beam-beam tune shift in this regime is not onlyinearization of the Vlasov equation is expected to be valid
necessary for the interpretation of the tune measurement dufy at least a small beam-beam parameter, this discrepancy
ing operation of colliders with hlgh-lntensn)_/ beams, but alsosuggests that the single-mode approximation used for solving
could shed light on the onset of the chaotic coherent beamy,g jinearized Viasov equation may not be valid in the case

beam stability. of unsymmetrical beam-beam interactions. Unfortunately,

To explore the beam-beam effect with a large beam-beam, : L . .
. ithout the single-mode approximation, the linearized Vla-
parameter, a beam experiment, the HERA 2000 beam StUdgbv equation for the problem of beam-beam interactions is

was performed on HERPHadron Electron Ring Accelerator .

at DESY (Deutsches Elektronen-SynchrotforHamburg currently unsolvable computationally due to the unsolved de-
Germany in which a 920 GeV proton(p) beam and :';1 generacy problem of a matrix with mode coupling.

27.5 GeV positron(e’) beam collided at two IPs, H1 and This paper is organized as follows. Section Il summarizes

ZEUS[16]. The beam-beam interaction in HERA is a typical the results of the HERA 2000 beam experiment. In Sec. I,
case of unsymmetrical beam-beam interaction as the twi e self-consistent beam simulation for the HERA beam ex-

beams have very different lattice tunes and beam-beam pR€riment is discussed. In Sec. IV, the coherent beam-beam
rameters(strongp beam and weak® bean). In the experi-  tune ;hlfts calculated by using the rigid-beam modgl or the
ment, the vertical beam-beam parameter oféhbeam was linearized Vlasov equation are compared with the
varied from 0.068 to 0.272 by changing the vertical betaexperlment/s_lmula_tlon results. 'I_'he details of the coherer_lt
function of theet beam at two IPs. The emittance of tg  tune calculation with the theoretical models are presented in
beam and the luminosity were measured as functions of théPpendixes A and B. The characteristics of the coherent
beam-beam parameter. One important phenomenon observBgam-beam tune shift in the unsymmetrical case of beam-
in this experiment is that the measured coherent beam-beafR§am interactions are discussed in Sec. V. Section VI con-
tune shifts of thes* beam are much smaller than those cal-tins @ summary remark.

culated from the rigid-beam model. This is the first experi-

mental evidence indicating that the traditional models of the

coherent beam-beam tune shift are no longer valid in the Il. HERA 2000 BEAM EXPERIMENT

situation of strong beam-beam perturbations. It should be |, the Juminosity upgrade of HERA, the beam-beam pa-
noted that in all the cases in the HERA experiment, théameters of the electron beam have been nearly doubled. To
single-particle motion is locally unstable at the origiipsed  examine any possible luminosity reduction due to beam-
orbit) due to beam-beam interactions. In the experimentyeam effects, a series of beam experiments were performed
however, the beam was observed to have a very good lifey HERA [14,16). In the HERA 2000 beam experiment, the
time and operation condition in all the cases. This |§_the firsk* peam was used to collide with tiiebeam at the two IPs
direct experimental observation of the global stability of agnq the effect of a large beam-beam parameter of the lepton
beam coexisting with the local instability of the beam par-neam was explored by increasing the vertical beta function
ticles due to beam-beam interactions. (Bey) Of the €" beam at the IPs. The vertical beam-beam

To have a better understanding of the experimental datg; amete of the e" beam is related t by [17
we reconstructed the HERA beam experiment with a :sel;?J (£ey) Bey by [17]

consistent beam-beam simulation. Remarkable agreement e, Bey
between the experiment and the simulation was observed on Eey
emittance growth and luminosity reduction. More signifi-

cantly, the computer simulation confirmed the experimentawherer, and y, are the classic radius and Lorentz factor of
result of very small coherent beam-beam tune shifts in thigositron, respectively, and, is the number of protons per
case of a very large beam-beam parameter. To examine tfginch. The horizontal and vertical sizes of fheeam at the
validity of the theoretical models for the coherent beam-IPs are given by, , anday,,. In the experiment, thp beam
beam tune shift, the linearized Vlasov equation and the rigidcurrent(l ;) was fixed. Since the beam-beam parameter of the
beam model were solved for the HERA experiment. Since? beam is very small, there was little change in theeam

the distribution of thee* beam significantly deviated from size as it was observed during the experiment. The vertical
the Gaussian due to the strong beam-beam interaction, tHgam-beam parametég, is therefore linearly proportional
solutions of the linearized Vlasov equation and the rigid-to By in this case. During the experiment, after the proton
beam model were calculated with the beam distributions obeurrent was filled,, was increased from 0.068 to 0.272 as
tained from the beam-beam simulation instead of assumingey, Was changed from 1.0 to 4.0 m while other lattice pa-
Gaussian distributions. It was found that for the unsymmetrifameters were kept as constants. Table | lists some beam
cal beam-beam interaction with a large beam-beam paranparameters used in the HERA experiment and Table Il lists
eter, the result of the rigid-beam model is inconsistent withthe € beam currentl,) and the beam-beam parameters of
the beam experiment and beam simulation even though the € andp beam atB., where the measurement was per-
more accurate beam distribution was used in the calculatiorformed. Thee* and p beam sizes were not matched during

1)

27 Ye Op (0 + Tpy)
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TABLE |. Some beam parameters used in HERA 2000 beam
experiment, wheré,, is the revolution frequency, § and are the
total number of bunches and the number of colliding bunches, | is
the beam currents, and B, are the horizontal and vertical beta
function at the IPsgy and oy, are the horizontal and vertical beam
size without collision at the IPs;, and €, are the horizontal and
vertical emittance without collision;, and, are the horizontal and
vertical betatron tune, ang, and 7, are the horizontal and vertical

€/¢€g
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damping time. F X x x M
[ 8 %
0....I...I....I....I....
Parameter Positron beafe’) Proton bean(p) 005 o010 015 020 025 030
Energy(GeV) 27.5 920 foy
fres (kH2) 47.317 47.317 FIG. 1. Emittance of the" beam as a function df,. € is the
Niot/ Neol 189/174 180/174 emittance without collision. Discrete points are from the experiment
I (MmA) (see Table I} 90 and continuous curves from the beam simulation. Circles and curve
B.d B, (M) 2.5/(see Table Iy 7.0/0.5 a are the vertical emittance. Crosses and cumage the horizontal
oyl 7y () 283(see Table I 164/39.9 emittance. The two experimental data points at eaghwhere the
measurement was performed correspond to the measurements at H1
&/ e, (Nm) 32.0/1.28 3.82/3.18
Y and ZEUS.
vl vy 52.169/52.246 31.291/32.297
7l 7y (M9 9.2/12.7 Fig. 1, the vertical emittance growth of te& beam increases

monotonically and smoothly with the increaseég{. This is
the characteristics of the incoherent beam-beam effect, in
the collision. Other accelerator parameters can be found inontrast to the coherent beam-beam effect of which the emit-
[16]. It should be noted that with two IPs in the HERA tance growth as a function of the beam-beam parameter
experiment, a beam-beam parameter of 0.272 is among thmuld experience certain jumshase transitionslue to the
highest ever achieved in storage-ring colliders. It can be easnset of the coherent beam-beam instab{i®}; To confirm
ily verified by using the transfer matrix with Courant-Snyder that the luminosity reduction in Fig. 2 is indeed due to the
parameters that the single-particle dynamics oféghéeam  emittance blowup, the luminosity calculated with the mea-
including the beam-beam interactions is linearly unstableured emittance by using the standard forniulé] is also
near the closed orbit. In the HERA experiment, however, theplotted in Fig. 2. The agreement between the measured lu-
beam was observed to have a very good lifetime and operaminosity and the calculated luminosity in Fig. 2 shows a
tion condition even at,,=0.272. As shown by the beam- consistency in the emittance and luminosity measurement. In
beam simulation in the next section, the global stability ofthe experiment, the collision tunes of taebeam were also
thee* beam is the result of the formation of a beam halo duemeasured a,,=4.0 m as»,=52.160 andy,=52.233. The
to the beam-beam interactions. coherent beam-beam tune shift of taebeam is therefore

In the experiment, the emittance of tké beam and the only A»,=0.009 andA»,=0.013, while from the rigid-beam
luminosity were measured as functions gf, at both the  model A»,=0.016 andAr,=0.042 if both the beams are
IPs. In Figs. 1 and 2, the measured emittance and the specii@aussian[14]. The measured coherent beam-beam tune
luminosity were plotted, with discrete points, as functions ofshifts in this case are inconsistent with the traditional under-
&, For each,, where the measurement was performed,

two data points correspond to the measurement at the two oS LML L L
IPs, respectively. The specific luminosity is defined &s '« 6} x .
=Ncoil/ (el p), whereN, and £ are the number of colliding Eor
bunches and the luminosity, respectivély]. As shown in ;w o o
| al .
b4
TABLE Il. The beam parameters that change with the vertical E [ SN
beta function(3.,) of thee” beam at the IPs in HERA 2000 beam go :
experiment, where the subscripgsand p indicate thee* and p Z 2F 8 ]
beam, respectively. L I T T T e
005 010 015 020 025 0.0
Be,y (m) g (MA) Oey (um) ge,x/ ge,y gp,xl ‘fp,y (10_4) se.y
1.0 19 35.8 0.041/0.068 2.54/1.40 FIG. 2. The specific luminosity as a function &f,. Circles are
15 18 43.8 0.041/0.102 2.35/1.06 from the experiment and continuous curves from the beam simula-
2.0 17 50.6 0.041/0.136 2.18/0.85 tion. The two experimental data points at edgh where the mea-
3.0 3.5 62.0 0.041/0.204 0.43/0.14 surement was performed correspond to the measurements at H1 and
4.0 26 72.0 0.041/0.272 0.31/0.09 ZEUS. Crosses are the luminosity calculated with the measured

emittance in Fig. 1 assuming Gaussian beam distributions.
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standing of beam coherent oscillation. Moreover, in the sym- [~ T T T
metrical case of beam-beam interactions, the ratio of the co- [ e
herent beam-beam tune shift and the total beam-beam
parameter has a value approximately ranging from 1.2 for
round beams to 1.3 for flatone-dimensional beams[4],
where the total beam-beam parameter is defined as the sum

4

of the beam-beam parameter at each interaction point. In the r'
o
p L L L
[+]

o,

ey/ €0

HERA experiment, this ratio was found to Beve,/(2&.,)
=0.11 in the horizontal plane anklve/(2&.,)=0.024 in the . —
vertical plane, respectively, for the beam atg3.,=4.0 m. 2000 4000 6000
The coherent beam-beam tune shifts in this case of unsym- t (turn)

metrical beam-beam interactions with a large beam-beam pa-

rameter are therefore extremely small as compared with the FIG. 3. Evolution of the vertical emittance of tie& beam cal-

2

F o e

symmetrical case of beam-beam interactions. culated with the beam simulation for the cases of HERA beam
experiment a(@) Bgy=1.0 m;(b) Bey=1.5 m;(c) Bey=2.0 m;(d)
Ill. RECONSTRUCTION OF THE HERA BEAM Bey=3.0 m; and(e) Bey=4.0 m.

EXPERIMENT WITH NUMERICAL SIMULATION between the experiment and the simulation. Figure 3 plots

To have a better understanding of the measured data in tHBe evolution of the vertical emittance of the beam at
HERA experiment, we have reconstructed the experimerfifferent B,. In all these cases, after a quick emittance
with a self-consistent beam-beam simulation. The computablowup, the beam emittance is restabilized and, conse-
tional code used in this study is an expanded versiofepf guently, an equilibriunfor quasiequilibrium state of thee”
that is currently capable of studying beam-beam effects op€am was reached. A study of the motion of particles in the
hadron or lepton beams with any aspect ratitio between core of thee” beam showed that the single-particle motion is

vertical and horizontal beam sizén the simulation, the lin- locally unstable at the origin due to beam-beam interactions

ear HERA lattice with the two IPs was used. The two colli- 2"d the vertical phase-space area in the vicinity of the origin
i is chaotic in all those cases. During the emittance blowup,

ing beams were represented t.’y a million macroparticles Witl?he particles in the beam core escape quickly to the beam
given initial Gaussian distributions in transverse phase SPaCLyiis due to the local instability at the origin. Without the

W'thOUt beam-beam Interactions, the initial b_eam d'sm.bu'onset of the coherent beam-beam instability, on the other
tion used in the simulation matches exactly with the lattice

B b int " i h P ted b k'. and, the particles in the beam tails are stable for the beam-
peam-beam intéraction at eac was represented by a Kigkam interaction. This restabilization of the beam emittance
in transverse phase space and the kick was calculated

. D . ; t?¥ therefore due to a depopulation of the beam core and for-
using the part|cle-_|n-cell method as _descnbed in Rél. .mation of a beam halo.pTFr)ﬂs is consistent with the experi-
Since the beams n the HE.RA experiment were flat, a UNlipental observation that the beam lifetime and operation con-
form. mesh extending to +20in the conflguratllon space with ditions were good during the experiment even in the case of
a grid constant of 02 was necessary in this case. All the =0.272[16]
computational parameters in the code were carefully teste ’Vm fhe bear:n simulation. the coherent beam-beam tune
for the numerical convergence. Tracking of particle mOtionshift was also calculated. I’:igure 4 is the calculated power

was conducted in four-(_jim_ensional transverse phas_e .Spagﬁectrum of the coherent oscillation of th& beam atg
without synchrotron oscillations and momentum deviations + oy

L =4.0 m. Due to the quantum fluctuation, tiebeam always
For lepton beams, the quantum excitation and synchrotro q A

d . treated as Kicks | h turn during the t Has a very small oscillation which is enough for the calcula-
damping were treated as KICks In each turn during the racky,n of the coherent frequency if the numerical noise is small.
ing. The horizontal kick i$18]

Since a large number of particles were used for each of the

Ax= e Y2y + [(1 - e M@ g [V, beams, in this simulation the numerical noise was very low
and we were able to calculate the coherent frequency without
Ap, = e V@Rp +[(1 - & 2, VA, 2) applying off-center kicks on the beams. The spectrum was

calculated by the fast Fourier transformati@eFT) of the
wherex andp, are the normalized horizontal coordinate andbeam centroid motion from the 5000th to 9000th turn. Since
its conjugate momentung, is the horizontal emittance, and at the 5000th turn the beam has already reached its quasi-
w; andw, are random numbers with a Gaussian distributionequilibrium, the transient state of the beam was thrown out
that is centered at zero and has unit standard deviation. Ttauring the tune calculatiofsee Fig. 3. As shown in Fig. 4,
damping time in the horizontal and vertical directionsand  the power spectrum peaks at 0.1605 and 0.2331 in the hori-
7y, has the unit of turns. For HERA; =436 andr,=600, zontal and vertical planes, respectively, which corresponds to
respectively. The vertical kick has a similar formula. 1,=52.161 andv,=52.233 for the beam coherent tunes dur-

With the beam-beam simulation, the emittance growth ofing collision. This simulation result agrees excellently with

the " beam and the specific luminosity were calculated ashe experimental measurement af=52.160 and v,
functions of &, for the HERA experiment and the results =52.233. The beam-beam simulation therefore confirmed the
were plotted in Figs. 1 and 2 as solid lines. Both the emit-coherent beam-beam tune shift measured in the HERA beam
tance and the luminosity plot show a remarkable agreemermxperiment.
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FIG. 5. The projection of the particle distribution of teebeam
in the vertical direction obtained by the beam simulation for the
case of HERA beam experiment &t,=0.272 (8,=4.0 m. (a)
The initial Gaussian distributior{p) the distribution at the 5000th
turn, and(c) the Gaussian distribution of which the standard devia-
tion is the same as that of the beam distributiorilin

glects the effect of thep dependence of the beam equilib-
rium distributions, wherep is the angle of the action-angle

0.10 0.15 0.20 025 0.30 variable. In the HERA beam experiment, the equilibrium
(quasiequilibriuny distribution of thee* beam in fact has a
Vy strong ¢ dependence as shown in Fig. 6. For a comparison,

the initial distribution used in the simulation was also plotted
in the figure and shows n¢ dependence, as it should be. In
) order to compare the experimental/simulation result with cal-
HERA beam experiment afey=0.272 (fey=4.0 m. The beam o, j4ti0ns of theoretical models, the theoretical models need

centroid motion was calculated during the beam simulation. Not e . -
that in this case the total beam-beam parameters for the two IPs aﬁrg be modified to include the dependence of non-Gaussian

0.082 and 0.544 in the horizontal and vertical plane, respectively. eq[JI'Icl)lbl‘rL:Lrjtr:]]e?Iisr:gS:iatlct)fT:.Simulation code used in this study

The very small coherent beam-beam tune shift in this cas@e also tested our code on PEP-II, the B-factory at the Stan-
of very large beam-beam parameter could be understood dard Linear Acceleratpr. Center. Beam-beam interactions in
the result of the depopulation of the beam core. To furthePEP-Il are due to collisions between unsymmetrical electron
confirm this, the dynamics of the beam particle distributions(€”) and positron beams. The luminosity and the collision
was studied during the beam simulation. Figure 5 plots thdune calculated from the beam simulation were found to
projection of the distribution in the vertic&)) direction and agree very well with the beam measurement performed on
shows that the distribution of the" beam deviates from a PEP-1[19,20. For example, with the accelerator parameters
Gaussian distribution with a significant drop at the beam cor@iven in Ref. [19], the calculated luminosity is 2.2
and a growth of the beam tails. Due to the beam-beam inter-
actions, the fixed point at the origin becomes unstable in the
vertical phase space and bifurcates into a pair of new stable

L C .
fixed points that locate symmetrically on the two sides of the [
origin and at a distance aboutrg, from the origin, where ’-\ b /
ey is the normalized vertical size of th& beam without 1.0 =

collision. Particles remaining inside the beam core are either
chaotic or move around these two new fixed points in the
vertical phase space. In the horizontal phase space, the par-
ticles in the beam core are still oscillating around the origin. [
Compared with the distribution of the” beam, a Gaussian 990 0.2 0.4 0.6 0.8 1.0

beam that has the same emittance ofé¢hdeam has many ¢/2n

more particles in the beam core. The real coherent beam-

beam tune shift measured in the experiment and calculated FiG. 6. The angle dependence of the particle distribution of the
with the beam simulation is therefore smaller than that cale* beam obtained by the beam simulation for the case of HERA
culated from the rigid-beam model with Gaussian beamsheam experiment af,=0.272(8,,=4.0 m. (a) The initial Gauss-
Moreover, the assumption of Gaussian beams in all the théan distribution,(b) the ¢, dependence, an) the ¢, dependence
oretical models of the coherent beam-beam oscillation nesf the distribution at the 5000th turn.

FIG. 4. Power spectrum of the centroid motion of &ideam in
(a) the horizontal andb) the vertical direction for the case of

1.5 —————r——T T

2np(9)
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TABLE IIl. The coherent beam-beam tune shifts of #iebeam TABLE V. The same as Table IV, but with only one-tenth of the
at Bey=4.0 m(&,,=0.272. “Experiment” and “Simulation” are the  p-bunch current used in the experimegg,=0.0068.
coherent tunes measured in the experiment and calculated in the

beam simulation, respectively. ‘Rigid-Real” and ‘Rigid-Gaussian” B, =1.0 M  vey  Avey/(260)) ey  Aveyl(2£sy)
are the coherent tunes calculated by using the rigid-beam modet— _
with a Gaussian distribution and with the distribution from the Simulation  0.1672 0.224 0.2414 0.337
simulation, respectively. “Vlasov Eq.” is the coherent tunes calcu- Rigid-Real  0.1668 0.263 0.2406 0.396
lated with the linearized Vlasov equation. Rigid-Gauss  0.1668 0.268 0.2406 0.399
Vlasov Eg. 0.165 0.53
Bey=4.0m Vex Aveyl (2865 Vey Aveyl(2&ey)
Experiment  0.1600 0.110 0.2330 0.024 simulation or calculated with the theoretical models for the
Simulation  0.1605 0.104 0.2331 0.024 cases 0f3.,=1.0 and 4.0 m, wherdv,, andAv,, are the
Rigid-Real  0.1555 0.164 0.2194 0.049 horizontal and vertical coherent beam-beam tune shift of the

e" beam. The experimental measurementBgj=4.0 m is
also included in Table lll. The significant discrepancy be-
tween the results of the models and the results of the
experiment/simulation shows that the theoretical models are
inconsistent with the experiment and simulation. Note that
e 3 2% 1 A the rigid-beam model with the beam distribution from the
Qg?:l;risgrﬁ?gg?['%js trzéicjrizcomtalscéI\I?girnﬂsjngag?rpr;e sim'ulation did a little b_etter thar) that with Gaussign distri-
& beam calculated fr(;m the beam simulation is 0.521 Whilebutlon. To further exgmme_the failure of the theoretical mod-
the beam measurement is 0.524 ' els, a beam-beam simulation was conducted for the case of
' ' Bey=1.0 m but with only one-tenth of thp-bunch current
used in the experiment, i.5,,=0.0068. The result is listed
in Table V and shows that the rigid-beam model with either
the Gaussian distribution or the distribution obtained from
the simulation is in good agreement with the beam simula-
Two theoretical models, the rigid-beam model and the lin-tion. In fact, the quasiequilibrium distribution of tlee beam
earized Vlasov equation with the single-mode approximain this case is very close to a Gaussian. This reconfirms many
tion, were examined with the HERA experiment. For theprevious studies that the rigid-beam model is correct for un-
rigid-beam model, the coherent tunes were calculated witlymmetrical beam-beam interactions with a relatively small
two different methods: assuming a Gaussian distribution abeam-beam parameter. Contrary to the cases of the HERA
the equilibrium distribution of the" beam[Eqs.(A10) and  experiment, in the case gf,=0.0068 the single-particle dy-
(A14) in Appendix A 1] or using the non-Gaussian quasi- namics including beam-beam interactions is stable at the ori-
equilibrium distribution of thes* beam obtained in the beam- gin (closed orbit. The failure of the rigid-beam models in
beam simulatiorfAppendix A 2. In the case of the Gaussian the cases of the HERA experiment could therefore be due to
distribution, the beam sizes used in H&14) are of the the chaotic single-particle dynamics in the core of #ie
experimental measurement or the beam-beam simulatiotseam.
The small differences in the beam sizes measured in the ex- In the case of the linearized Vlasov equation, as shown in
periment or calculated from the simulati¢see Fig. 1 made  Tables IlI-V, the calculation yielded wrong results no matter
little difference in Eq(A14). For the linearized Vlasov equa- how small the beam-beam parameter is. In the calculation
tion, the horizontal coherent tunes were obtained by solvingvith the Vlasov equation, several approximations were em-
the initial-value problem of the linearized Vlasov equationployed. Among them, the linearization, the one-dimensional
with the single-mode approximation in the horizontal plane.beam, and the single-mode approximation are the three ma-
The details of the calculations are in Appendixes A and B. jor approximations that cannot be directly justified by the
Tables Il and IV list the ratio of the coherent beam-beamexperimental observatiorisee Appendix B The lineariza-
tune shifts and the total beam-beam parameters ofethe tion of the Vlasov equation should not play the leading role
beam,A ve,/ (2&,,) andAve,/(2&,,), calculated in the beam in its failure for the unsymmetrical beam-beam interaction
since the linearization should be valid for a relatively small
TABLE IV. The same as Table Il but foBe,=1.0 m (&, bgam—b_eam parameter. To verify the va_Iidity of the one-
=0.069. dimensional approximation, we did a series of beam-beam
simulations for the case ¢, ,=1.0 m,&,,=0.068 or 0.0068,
Bey=1.0m Vex Aveyl (26y) Vey Avgyl (2&e,) but with a different beam aspect rati@ o/ a'xve). ranging
from 0.063 to 0.120. In all these cases, the horizontal coher-

Rigid-Gauss  0.1531 0.194 0.2040 0.077
Vlasov Eq.  0.1123 0.69

X103 cm?s™t whenlg=1.1 A andl,=0.61 A while the

IV. VALIDITY OF THEORETICAL MODELS FOR BEAM
COHERENT OSCILLATION

Simulation  0.1600 0.110 0.2172 0.212 ent beam-beam tune shift was found to be very similar to that
Rigid-Real  0.1517 0.212 0.2074 0.284 of the HERA experiment. Note that in the HERA experiment
Rigid-Gauss  0.1475 0.263 0.1996 0.341 and in all the cases in Tables llI-\4y ¢/ 0y =0.126. This
Vlasov Eq.  0.121 0.58 indicates that the horizontal coherent beam-beam tune shift

is not sensitive to the aspect ratio of the beam. A similar
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phenomenon has also been observed in the symmetrical case Ll UL LS A ]
of beam-beam interactiorig]. The large discrepancy in the ]
coherent beam-beam tune shifts calculated with the linear- ~ °3f 3
ized Vlasov equation as compared to that obtained from the <& [ ]
experiment/simulation is apparently not due to the approxi- g ozf 3
mation of the one-dimensional beam. With the single-mode = 1

. . . . Y b 1
approximation, on the other hand, the only oscillation mode a oifb 1
of the beam distribution that was kept in the calculation is a ]
the m=1 mode in Eq{(B6). As shown in Fig. 6, the equilib- E T~
rium distribution of thee™ beam[f; o1, ¢) in Eq. (B4)] de- %806 010 015 o020 025 030
pends strongly orp. In this case, the dominant mode of the ¢

ey

equilibrium distribution is them=2 mode, which has &
ol N )
dependence of?’. As them=2 mode could be a dominant FIG. 7. The ratio of the coherent beam-beam tune shift and the

intrinsic mode of the system, the single-mode approximatiotheam-beam parameter as a function of the beam-beam parameter of
could be inconsistent with the dynamics of the beam. In orthee* beam in the vertical plane calculated frge) the beam-beam

der to study the effect of mode couplings in the linearizedsimulation and (b) the rigid-beam model with the Gaussian
Vlasov equation, we have derived the eigenvalue equation afistribution.

the linearized Vlasov equation that is similar to EB13)

but includes high-order modes. After truncating higher-ordeigescribed by Eq(A14) of the rigid-beam model. When the
modes atm=m,, M in Eqg. (B13) becomes &2m,+1)(2l,  peam-beam parameter is large, on the other hand, the equi-
+2) X (2my+1)(21,+2) matrix wherel, is the number of librium size of thee* beam is much larger than that of the
grids on the mesh of the action space &hgandM, in Eq.  beam and the beam-size growth of #iebeam(see Fig. 1
(B14) are no longer diagonal matricésee Appendix B We  dominates the beam-size mismatch. Moreover, the particle
have, however, failed in obtaining a set of orthogonal eigendlistribution of thee" beam deviates significantly from a
vectors for the eigenvalue equation of the linearized Vlaso\Gaussian distributiorfsee Fig. 5. In this case, the origin
equation becaus# is a singular(ill-conditioned matrix  (closed orbit of the phase space of thes beam is unstable
when the mode couplings are included. A similar problemfor the single-particle motion and a large number of posi-
has also been encountered when including the mode cotrons initially in the core of the" beam escape to the beam
pling in the case of symmetrical beam-beam interactions. tails and form a halo near the tail of tipgbeam. The coher-
ent beam-beam tune shift of te& beam thus becomes much
smaller than that in the case of two matched Gaussian beams.
Note that for two matched Gaussian beams, the ratio of the
coherent beam-beam tune shift and the total beam-beam pa-
In the symmetrical case of beam-beam interactions, theameter is 0.5 for unsymmetrical beam-beam interactions.
ratio of the coherent beam-beam tune shift and the totaFor thee® beam in the HERA experiment, as the beam-size
beam-beam parameter is approximately a constant of 1.2 fgrowth and the resultant beam-size mismatch increase with
round beams and 1.3 for flat beafdd. Note that with sym- the beam-beam parameter, the ratio of the coherent beam-
metrical beam-beam interactions, the beam-size growths dfeam tune shift and the beam-beam parameter decreases with
the two beams are symmetrical and the beam distributionthe beam-beam parameter. In general, in the unsymmetrical
are usually close to a Gaussian when the beam-beam paragase of beam-beam interactions, the two colliding beams
eter is below the threshold of the onset of coherent beamhave different equilibrium distributions described as the
beam instability{2,15]. The coherent beam-beam tune shift equilibrium states of the Vlasov equation in E&4). The
thus depends linearly on the beam-beam parameter in a fairlpismatch in the distributions as well as the beam sizes is, in
large range of beam-beam paramé¢tdr On the contrary, in  principle, independent of the initial states of the beam distri-
the HERA experiment the ratio of the coherent beam-bearbutions and the initial beam-size mismatch as long as the
tune shift and the beam-beam parameter ofdhbeam de- considered equilibrium state of the Vlasov equation is well
creases monotonically with the increase of the beam-beaisolated and is the only one that is close to the initial beam
parameter as shown in Fig. 7. This different characteristic oflistributions. The beam-size mismatch in the unsymmetrical
the coherent beam-beam tune shift stems mainly from thease of beam-beam interactions is therefore intrinsic and un-
mismatch in the equilibrium distributions of two unsym- avoidable, especially when the beam-beam parameter is
metrical colliding beams. In the HERA experiment, the beamlarger. Moreover, this beam-size mismatch increases with the
size of thee* beam at the IPs is slightly larger than that of strength of beam-beam perturbations. The functional depen-
the p beam initially without collision(see Table)l When the  dence of the coherent beam-beam tune shift on the beam-
beam-beam parameter is small such as in the casgof beam parameter in Fig. 7 is therefore a general characteristic
=0.0068, the beam-size growth is insignificant and theof unsymmetrical beam-beam interactions.
beams are very close to the initial Gaussian distributions. Figure 7 also plotd\v,,/(2¢,,) as a function of, cal-
The ratio of the coherent beam-beam tune shift and theulated based on the rigid-beam model. It shows that when
beam-beam parameter of teé beam is simply determined the beam-beam parameter is large, the rigid-beam model re-
by the mismatch in the initial beam sizes without collision assults in a similar &, dependence ofAv,,/(24,,) even

V. COHERENT BEAM-BEAM TUNE SHIFT VERSUS
BEAM-BEAM PARAMETER
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though it overestimates the coherent beam-beam tune shifteason for this different characteristic of the coherent beam-
Note that in the rigid-beam model, thig, dependence is beam tune shift is the intrinsic beam-size mismatch between
due to the beam-size mismatch as given in &dl4). Ata  two unsymmetrical colliding beams due to the difference in
largeé, y, the beam-size mismatch is dominated by the beamthe equilibrium distributions of the two beams. This intrinsic
size growth of thee* beam. This suggests that the result of mismatch in the beam distributions due to beam-beam inter-
the rigid-beam model in EqA14) provides an approxima- actions becomes more pronounced as the strength of beam-
tion of the functional dependence of the coherent beam-beafveam perturbations increases. The ratio of the coherent
tune shift to the intrinsic beam-size mismatch in unsym-beam-beam tune shift and the beam-beam parameter de-
metrical beam-beam interactions with large beam-beam pareases, in general, with the increase of beam-beam param-
rameters. The overestimate of the rigid-beam model could beters in the unsymmetrical case of beam-beam interactions.
due to the chaotic dynamics of the particles in the beam core.
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betatron tunes. The results of a self-consistent beam-beam

simulation, the rigid-beam model, and the linearized VIasov appgENDIX A: COHERENT BEAM-BEAM TUNE SHIFT
equation were compared with the beam measurement in the FROM THE RIGID-BEAM MODEL

HERA 2000 Beam Study. Remarkable agreement was found

between the beam simulation and the HERA experiment in a The coherent beam-beam tune shift in the rigid-beam
wide range of, and, especially, at very large beam-beam panodel has been studied before for the unsymmetrical beam-
rameters of, the lepton beam. The rigid-beam model wa®eam interaction. Previous studies are, however, limited to
found to be only correct when the beam-beam parameter e special cases where either the two beams have the same
small. The result of the linearized Vlasov equation with the[8] or very different[14] beam-beam parameters. Moreover,
single-mode approximation is inconsistent with the result ofall of them assumed that the beams are Gaussian. In the
the beam experiment/simulation in either cases of large ofollowing, a general formula of the rigid-beam model is de-
small beam-beam parameter. The failure of the linearizedived that can be applied to any case of unsymmetrical beam-
Vlasov equation could be due to the single-mode approximabeéam interaction with either Gaussian or non-Gaussian
tion used in solving the linearized Vlasov equation. A studybeams.

of the dynamics of the beam distribution showed that the Letpi(f, 6) be the distribution of bearnin the normalized
high-order modes are important to the beam dynamics in thisonfiguration space whefe 1 or 2,r=(x,y) are the normal-
situation. An attempt to include high-order modes in the calized coordinates of the transverse space, @nsd the azi-
culation has, however, not been successful because of thmeuthal angle associated with the path length along the closed
difficulty in finding a set of orthogonal eigenvectors for the orbit. The beam centroid in the normalized space can be

linearized Vlasov equation. Recently, efforts have been madgz|culated byﬁiszpi(rj )dr. Considering a linear lattice

to include the angle dependence of beam distributions in ajith one IP, the transverse motion of the beam centroid can
expansion of the Vlasov equatidi21]. More studies are pe gescribed by

needed for a relevant solution of the linearized Vlasov equa-

tion for the unsymmetrical beam-beam interaction. Currently, d2|ii - N

the numerical simulation is the only reliable approach for a rra +Qi-R=(-1) )\iF[ZWE a6 277“)]- (A1)
prediction of the coherent beam-beam tune shift in this situ- n

ation. In Eq. (A1), Q; is a 2x 2 diagonal matrix with(€;);,= 17,

One interesting phenomenon observed in this study is thgng (,),,= nyy where (v, ;) are the fractional parts of

very small coherent beam-beam tune shift in this unsymine petatron tunes of the lattice for bearThe main part of
metrical case of beam-beam interactions. It was found thghe peam-beam kick in EGAL) is

the ratio of the coherent beam-beam tune shift and the total

beam-beam parameter of the weak lepton beam in HERA O A B R

decreases from 0.3 to 0.02 as the total beam-beam parameter F =J f pa(F1, 0)pa(Ta, 6)

increases from 0.01 to 0.54. On the contrary, in the sym- T

metrical case of beam-beam interactions, this ratio maintains XG(BY2x1 ~ Bypxe, Brgy1 = BYay ) dindiy,  (A2)
approximately a constant of 1.2 for a round beam or 1.3 for R

a flat beam in a large range of beam-beam parameter. ThehereG(x,y)=r/r? is the Green function of the beam-beam
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interaction and 3, , 8;,y) are the horizontal and vertical beta the horizontal and vertical coherent oscillations are decou-
function of beani at the IP, respectively. The strength of the pled. The two eigenfrequencies for the coherent oscillation in
beam-beam kick for the horizontal component of Efl) is  the horizontal plane can then be solved as

N 1 ]
Ni=Nix= a1_lVi,x:3il,£<21 Ve = _EJ‘”% + 05 % \(wf — 03)? + 160y 17 501 Sy,
[ v
wherei=1 or 2,j=1 or 2, buti#j; N; is the number of (A7)

particles per bunch of beama; is the classical radius of the \\here
particle in beami; and y; is the Lorentz factor of beam

With the definition of the beam-beam parameters in @&j. w? =12, 2, 8w;,
this kick strength can be written as

2v & dw; = )\i,x(Ai)lll(ZVi,x) (A8)

_ £VixSix
Nix=""12 00 xt Tjy), (A3 fori=1or2. If dw;<v; and in Eq.(A7)
1,X
2_ 202

where( ,, &) and(o; , a;,) are the beam-beam parameters (1= w3)" > 16V 45 y0w1 6wy, (A9)

and the rms beam sizes at the IP of baaror the vertical then the coherent frequencies of the two beam are
component of Eq(A1), A\j=\;, can be easily obtained by

exchanging« andy in Eq. (A3). Ve = w1 = vy~ by,
In the rigid-beam model of the coherent beam-beam os-
cillation, the shapes of the particle distributions in phase Vo= 0= Vpx ~ 0wy, (A10)

space are assumed not to change with time during the be%'%erev+ andv_ are the horizontal coherent tunes of beam 1

\(/jvsitcr:”takflorl; Wrr:]'k? thﬁ fer:][t?r‘; of %_hhe gliStt:’Ii?JUttlioﬂs doﬁ(r:]'"attﬁand beam 2, respectively. Note that in the unsymmetrical
€ ga _S C_O erent tunes. 1he Se utio euﬁ 9 N%ase of beam-beam interactions, the two eigenfrequencies do
beam oscillation is thus assumed to €, 6)=pu(F=R),  not correspond to the so called(6r ) and = modes of

wherepg(r) is the equilibrium distribution when the beam is symmetrical beam-beam interactions. The condition in Eq.

centered at the closed orbit. In genefélin Eq. (A2) is a  (A9) can be further simplified as
function of moments of phase-space variables and the time PSS \m (ALD)

dependence oF is implicitly through all the momentqTo

have a better picture of this, one may consider a momentherefore, if the difference of the lattice tunes is much larger

expansion of beam particle distributions in phase space.tf;]a}fn th? gheometgc average of :]he cohberent tt))eam-beam rt]l..,lfrse
: - PR shifts of the two beams, the coherent beam-beam tune shifts

With the rlgld-beamaappro>a<|mat|onF depends on the can simply be calculated with E¢A10). Note that in the

lowest-order moment®,; andR; only, HERA experiment, this condition was fulfilled. For the case

. +o 4o R . of strong-weak beam-beam interactions suchéas> ¢,

F :J J po1(f1 = R poaFa = Ry) one can expand, in terms of\,,/\;,. Keeping only the

e dominant term in the coherent beam-beam tune shifts yields

XG(,B%{le - Bé{x 2,,3%{33/1 - B%{@z)dfldfz- (A4) vy = vy~ Sy,
Note that the rigid-beam model may fail in cases where the )
variation of the distributions is important during the peam e V12,x Y2x Sws, (A12)
coherent oscillation. To find the oscillation frequencie®Rgf Vix ™ Vax~ 2V1x00;

one can average the beam-beam kick in L) over one  \here », and v_ are the coherent frequencies of the weak

turn (27 in the longitudinal directionand expand- into a  (beam 1 and strongbeam 2 beam, respectively. In the first

Taylor series oR.. Keeping only the linear terms &%, Eq. ~ €quation of Eq(A12), since the zeroth-order terfidw,) of

(A1) becomes a coupled four-dimensional harmonic oscillal2x/ 1 x €Xists and dominates the coherent beam-beam tune

tor, shift of beam 1, the first- or higher-order terms were ne-

R glected. In the second equation of H#&12), on the other

d°R, - " - - hand, the zeroth-order term is zero and the first-order term

a9 Qi R=(D"N(AL-Ri+A2-R), (A5 was thus kept. Note that if the lattice tunes of the two beams

are very different, Eq(A12) is equivalent to Eq(A10). If

wherei=1 or 2, andA; are 2xX 2 matrices with the denominator in EqA12), 5 ,—15,—2v; xdw,, is small,
- an analysis of the higher-order terms shows that the expan-
o F sion in terms of\,,/\; iS no longer accurate and the co-
A = = . (A6) xI A1 x .
IR | & om0 herent tunes have to be calculated by using &q). The
12T

two coherent frequencies in the vertical plane can be easily
If both the beams are mirror symmetric with respect to theobtained by exchanging andy and changingA;),; with
horizontal and vertical plané); are diagonal matrices and (A;),, in Egs.(A7)—(A12). As shown in our studysee Sec.
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IV), this approach of the rigid-beam model is quite good inbands and the coherent frequencies cannot be identified by
the case of unsymmetrical beam-beam interactions with anly solving the eigenfrequencies. In order to find the coher-

small beam-beam parameter. ent frequencies in the HERA beam experiment, we will in-
stead solve the initial-value problem of the linearized Vlasov
1. Gaussian beams equation for the coherent beam oscillation.

Consider only the horizontal motiowery flat beamin a
linear lattice with one IP. In terms of the action-angle vari-
able, the Hamiltonian for the betatron motion of beauti

In the case thaby; are Gaussian distributions, matéx in
Eqg. (A6) can be calculated analytically with EGA4) as

i1/X2 =1 or 2 can be written as
(A= , (A13)
2(Zx+2y) Hi(1,¢,60) = Hi o(l) + Ui(l, b, e){sz 86~ an)] ,
where 3,= 0%, +05, andX,=\o% +05,. The matrix ele- "
ment of(A;),, can be simply obtained by exchangixngndy (B1)
in Eq. (A13). Substituting EqstA2) and(A13) into Eq.(A8)  yhereH, o=l is the Hamiltonian associated with the be-
yields tatron motion in the linear lattice and; is the potential
o o energy for the beam-beam interaction that can be written, for
ow; = § (O1x* 91) 0} (A14)  one-dimensional beams, as
RS o
wherei=1 or 2,j=1 or 2, butj#i. Wheni=1, Eq.(Al4) Ui(l, ,6) :Ui[fj]:_ZMJ f f,(1,¢',0)
gives the coherent beam-beam tune shifts of the weak beam Bix Jo Jo

[beam 1 in Eq(A12)] obtained previously by Hoffstaetter [l [
for the strong-weak case of beam-beam interactjdd$ If XIn(N2B; 4 sin = V21" sin¢")dl"d¢’,
(Vl,xa Vl,y):(VZ,xv V2,y) and (0'1,Xa0'1,y):(<72,m0'2,y)a Eq. (A7) (B2)
is reduced to the formula obtained by Hiraf&]. If
(51,Xy§1,y):(§2,>u§2,y) and (Ul,xro'l,y):(o'z,xvo'Z,y)r Eq. (A7) is
reduced to the formula obtained by Hofmai&.

wherei=1 or 2 andj=1 or 2, buti#j. The action-angle
variables are related to the normalized variables xy
=\2Isin ¢ and p=\2Icose. fi(l,$, ) is the particle distri-
bution of beami in phase space and satisfies the Vlasov
equation. For convenience, we also define a functibhi}]

For non-Gaussian beams, especially the distributions olin Eq. (B2) for the potential integral. In EqB2), In(x—x’) is
tained from beam-beam simulations such as that in Figs. he Green function for the potential of beam-beam interac-
and 6, matriced\; in Eqg. (A6) cannot be obtained analyti- tion in one-dimensional space. If only the coherent beam-
cally but can be calculated numerically by using E§4).  beam tune shifts are involved, one can get rid of the periodic
The coherent frequencies can then be calculated with Eq function in the Hamiltonian in EqB1) by averaging the
(A7) or directly from Eq.(A5) if the horizontal and vertical beam-beam force over one turn. The Vlasov equatiorf;for

2. Non-Gaussian beams

motions are coupled. can then be written as
i f;
APPENDIX B: COHERENT BEAM-BEAM TUNE SHIFT — AtV = {U;,fi}, (B3)
FROM THE LINEARIZED VLASOV EQUATION 90 P

The use of the linearized Vlasov equation has been very*nerei } is the Poisson bracket. Assume that the beams have
successful for the coherent beam-beam tune shift in the ca¥gached equilibrium distribution§s  that satisfy

that two beams have the same or very close lattice ti#les o
In order to find the coherent beam-beam tune shift, one needs vi'x—"o ={Ui 0. fi o} (B4)
to identify the coherent frequencies from the eigenfrequen- I

cies of the linearized Vlasov equation. The linearized Vlaso\yhereu, I ,#)=Uj[f; o]. Consider that beainexperiences a
equation, in principle, has infinite numbers of eigenfrequensma||  perturbation  from its  equilibrium  distribution
cies associated with infinite numbers of oscillation modes.. | . g)=f,(I,$,6) —f, (1, ¢). The linearized equation for
For real beams, the number of the eigenfrequencies of th (I, &, 6) can be obtained by subtracting E&4) from Eq.

beam oscillation in transverse space is twice the number i35y 2nd nealecting the termiU.[4:1. & which is hiaher
particles in a bunch. When two beams have the same lattic : g g ULy, v} 9

tunes, the coherent frequencies can be easily identified sincerOIer s as
the eigenfrequencies that correspond to the coherent frequen- I, b
cies are separated from the rest of the eigenfrequencies that 20T s ={Ui ot} +{Vi.fi o}, (B5)

form a continuous ban@many close eigenfrequency lines

[4], although it is not very clear mathematically why this whereV;(l, ¢, 6)=U;[#;].

separation occurs. The situation becomes more complicated To solve Eq.(B5), one can convert it into a system of
when two beams have very different lattice tunes. In thisinfinite numbers of coupled ordinary differential equations of
case, all the eigenfrequencies are in one or two continuousiodes by using the Fourier transformation
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h(l,,0) = f ) dv X i, n)e™0  (B6)

m=—o

where v is the oscillation frequency of the beams amd

denotes modes. The=1 mode corresponds to the coherent!Ntéraction at
dipole oscillation. To further simplify the problem, one may

PHYSICAL REVIEW E 71, 036501(2005

covers severab; , is good enough for a calculation of the
coherent frequency. In order to have an accurate frequency
for the lattice tune in the eigenfrequencies of Hgj7), how-

ever, the mesh has to be large enough so that the beam-beam
=1,Al is negligible. In this study, we therefore
used|,Al=160¢€ , and Al=0.05¢,, Whereg;, is the nor-

use the single-mode approximation in which only the modemalized emittance of beamLet (1Al v)=¢; (v). Equation

with m=1 is kept in the linearized Vlasov equatip#]. It

(B7) can then be converted into a system of linear algebraic

turns out that the use of the single-mode approximation igquations on the mesh,

not only a convenience but also a necessity. Without the
single-mode approximation, no effective method is available

for the general solution of EqB5), except for simplified
models as in Refl21]. Substituting Eq(B6) into Eq. (B5),
multiplying €, and integratingp over 2 on the both sides
of Eqg. (B5), and only keeping then=1 mode, yields

©

v%(l,w:vi,x%<l,v>+Qi<l>%(l,v)+f Gi(1,1) (1", v)dl’,

0
(B7)

Where%(l V)= ),

_ L[ i
Qi(l)—27J0 P de, (B8)
and
-2 2w (27 —id o ’
G =t [T [T eSS

™28 Jo Jo VBl sing— Bl sing’
%_ i %) !

X <2| Ccos¢ pr sing ) d¢’de. (B9)

If the equilibrium distributions are independentgfsuch as
for Gaussian beams, the imaginary termGsfl,l’) is zero.

Otherwise, this imaginary term contributes a damping to theequilibrium

|
vy = vy + QAN gy + S Gi(IALKAD) gy,
k=0

(B12)
which leads to an eigenvalue problem
MV = 1V, (B13)
where
V= (4o s, - A a0 o - Jﬂzlp)T-
M is a Al,+1) X 2(Ip+1) matrix
M; O
M :( ol ) (B14)
O, M,

where M, M,, O;, and O, are (I,+1) X (I,+1) matrices.
Because of the single-mode approximatitdh, and M, are
diagonal matrices with the diagonal elements

(M= vix— Ql(k—= 1DAI] (B15)
and the elements dD; are
(O =Gi((k= DAL (I =1)AD), (B16)

wherek=1,... (I,+1),1=1,... (I,+1) andi=1 or 2. If the
distributions are Gaussian, all these matrix ele-

linearized Vlasov equation whep is stable or an excitation ments in Eqs(B15) and(B16) can be calculated analytically

when ¢ is unstable. If the equilibrium distributions, are
Gaussian, with a similar algebraic treatment in Réf, the

by using Egs.(B10) and (B11). In the case of the HERA
experiment, the equilibrium distribution of thpebeam is still

integrals in Eqs(B8) and(B9) can be calculated analytically very close to a Gaussian but tk& beam is no longer a

as
& xo"zx —8 N2
Q=1 e By, (B10)
i,X
in(7 r..7") |12
Gi(l,l’) - gi‘xrije—(Zi+Zj’)/2|: mln(z|,r| Z,) :| , (Bll)
ma)(Zi,fiij

where i=1 or 2, j=1 or 2, buti#j. z=l/o?, Z
:Bj.xl IIO'J-Z,X, andrij :O'iX/O'ﬁX.
1. Eigenfrequencies and eigenvectors of the linearized Vlasov
equation

Gaussian beartsee Figs. 5 and)6Let beam 1 and 2 be the
e* andp beam, respectiveljM ; andO, can then be obtained
analytically. The matrix elements &, andO,, on the other
hand, have to be calculated numerically by using EBS)
and (B9) with the quasiequilibrium distribution of the*
beam obtained from the beam simulation.

With the eigenvalue equation in EB13), the eigenfre-
quencies and a set of orthogonal eigenvectors for the linear-
ized Vlasov equation can be found numerically. If the two
beams have the same lattice tune, the eigenfrequencies of Eq.
(B13) are identical to that obtained in Réfl]. Figure &a) is
an example of eigenfrequencies of EB13) for the case of
V1 x= Vax aNd &y =& . It shows that in the symmetrical case
of beam-beam interactions, the coherent frequdttoy first

To further proceed with Eq(B7), one may discretize the frequency line from the left of Fig.(@)] is separated from

action spacdl) into a mesh and solve the equation on thethe rest of the eigenfrequencies that form a continuous band.
grids [3,4]. Let I=IAl, where Al is the grid size;l The width of the band equals the incoherent beam-beam tune
=0,1,2,..1, andl,Al is the size of the mesh. Since the shift. The coherent frequency can therefore be easily identi-
distributions decay to zero quickly &sncreases, a mesh that fied in this case. Note that the coherent beam-beam tune shift
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0.05 0.10 0.15 0.20 025 0.30 FIG. 9. |CJ? as a function ofy for the cases of Fig. 8. The
Vi arrows indicate the coherent frequencies.
FIG. 8. Eigenfrequencies of EGB13) for the case ofa) vy, It should be noted that because of a very small beam-

=1y, é1x=E, and (b) the HERA beam experiment. Ife), the beam parameter of thebeam, during the HERA experiment
dashed line marks the lattice tune that corresponds to the 0 modBO coherent beam-beam tune shift was observed on the pro-
The single isolated line on the left is the coherent frequency thaton beam. The matrix elements Of are very small as com-
corresponds to a ratio of the coherent beam-beam tune shift and tiggred with the diagonal elements bf; and M,. O, can

total beam-beam parameter of 1.35.(h), the dashed lines mark therefore be approximated as a zero matrix and the eigenfre-
the lattice tunes of the* beam(the left line andp beam(the right  quencies for thee* beam can be easily obtained from
line), respectively. The single isolated line on the right is the degeny, 1\71:,/\71, Where\;ﬁ(%o,%l, 'Ell )T is the subvector

?orraiﬁg :Jgs;;rne]q#f]gc\isrtifg;tg)??seﬁgs ir;d t:esitgrl]?n(;gr:?ne leftis space associated with te& beam. Sincé , is diagonalized,

' phy 9 solving the eigenfrequencies and a set of orthogonal eigen-

vectors ofM , is trivial. The eigenfrequencies and eigenvec-

calculated from this coherent frequency is the same as that itors obtained fromM ; were found to be the same as that of
Ref. [4]. The situation is more complicated when the two Eq. (B13) in the subvector space associated withéhbeam
beams have very different lattice tunes. Figute) ®lots the in this case.
eigenfrequencies for the case of the HERA experiment. In
this case, the eigenfrequencies are divided into two groups,
one for each beam. For thef beam, the eigenfrequencies
form a continuous band that starts at the lattice tune o&the
beam and has a width of the incoherent beam-beam tune
shift of the €" beam. Because there were two IPs in the
HERA experiment, the incoherent beam-beam tune shift in
Fig. 8b) is 2&,,=0.082 for thee" beam. The characteristics
of the eigenfrequencies for theebeam, in principle, is simi-
lar to that of thee* beam. Since the beam-beam parameter of
the proton beam is very sma(lgzyngp,x~104), all the
eigenfrequencies for thebeam degenerate into a single line Xo(Be x)°-5/aex
[the first line from the left of Fig. &)] that corresponds to " ’
the lattice tune of thep beam. In the case of very unsym-  F|G. 10. Calculated coherent beam-beam tune shift by using the
metrical beam-beam interactions, therefore, the coherent freinearized Viasov equation as a function of initial kigk on the
quencies cannot be simply identified from the eigenfrequendistribution of thee* beam[see Eq.(B15)] for the case of the
cies of the linearized Vlasov equation. HERA experiment ap3s,=1.0 m.

L L B B B L LR
06

0.4

Av,,/(2¢,5)

o2f

0.0 s
0
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2. Initial-value problem for coherent frequencies fore, the two eigenfrequency bands of E&13) are well
Let (1, Wiy Yot 1+9) and separatedsee Fig. 8)]. In this case{v,} are the eigenfre-
N N R i e g " quencies for the* beam whem=1, ... |,+1 and the eigen-
(V(l)’ L ,V(|D+1),V(|P+2), . ’V(2|p+2)) be the elgenfrequenCIeS frequencies for th@ beam Whem:|p+2, L ,2p+2_ In the

and eigenvectors of the discretized and linearized Vlasoiscretized action space, the perturbation of the beam distri-
equation wherd V("W =1,V In the HERA experiment, the bution #,(I,¢,6) and #»(1,¢,6) can be represented as a
lattice tunes of the two beams are very different and, therevector,

'Z(a) = (¢1(0,¢, 6)! lﬁl(Al ’ ¢l 0)! aen 'lpl(lpAI ’ d)! 6)! wZ(O!(yb! 0)! 2o !wZ(IpAI ’ ¢l 6))1-

With the single-mode approximation, the general solution of . dpt2 -\ L

n(l,¢,0) andy(l, ¢, 6) can then be obtained from a super- #0)=| 2 CVi|d?=(VC)e?, (B19)
position of the eigenvectors of the linearized Vlasov equa- k=1

tion,

whereV is a(2l,+2) X (2l,+2) matrix of which theith col-
- umn is\7i and éz(Cl,Cz, ,C2|p+2)T. The coefficientdCy}
p+

7o) = K)o (=16) can then be calculated fro@=V~1g. It should be noted that
o) gl CvTe ’ (B17) the initial kick on the beam distributions in E@18) can be
in any direction in phase space since the coherent frequency
is the frequency of an infinitesimal oscillation. For near-
integrable systems considered in this study, the phase-space
where{C,} are constants and can be determined with an iniregion in the vicinity of the origin is integrable and only
tial condition, ¢(1,¢,0) and (1, $,0). Since|C,/? is the  consists of invariant circlegtori). It is therefore isotropic.
oscillation amplitude of the beam distributions with the fre- The coherent frequencies calculated were indeed found to be
quency ofy,, the diagram ofC,|? versusy, corresponds to independent of the direction of the initial kick.
the frequency spectrum of the coherent oscillation. The two Figure 8 plots the calculatefC,|?- v, diagrams for the
peaks in thdC,/?- v, diagram, therefore, provide the coher- symmetrical case of beam-beam interactions wherg
ent tunes whenjy (1, ¢,0)— 0 and (I, ¢,0)— 0. =vy andé; =&, [Fig. Aa@)] and for the HERA experiment
Consider a small kick that kicks beam 1 away from its[Fig. Ab)]. In Fig. 9a), the peak with an arrow is the calcu-
equilibrium distributionf, (I, ¢), wheref, ((1,¢) is known lated coherent frequency that is the same as that in Fay. 8
numerically from the beam-beam simulation. The initial per-In Fig. 9b), the main peak indicates the calculated coherent
turbation of the beam distribution is frequency of thee” beam in the HERA experiment. The
small peak in the lower right corner is the coherent frequency
of the p beam. Figure 10 plots the calculated coherent beam-
beam tune shift of the® beam as a function of initial kick,
_ _ _ ime for the case of the HERA experiment. It shows that the cal-
a1, 4,0 =1, dx+ 0. fl’O(X’pX)_%gm(l)el culated coherent beam-bearF:] tune shift increases with the
decrease ok, and converges a%, approaches zero. This
amplitude dependence of the coherent frequency is consis-
tent with the beam simulation. Since the coherent frequency
is the frequency of an infinitesimal oscillation, the conver-
. P : . ence of the calculated coherent frequencyat O provides
and yz(1,4,0)=0, wherex, is the initial k|gk. Wltha the ?he wanted coherent frequency. Asqshov%bin OLIJDI’ st(ehe
single-mode approximationys(l,¢,0)=g;(D€? and #(0)  sec. IV), the linearized Vlasov equation with the single-
=ge'®, whereg=(g,(0),9,(Al), ...,01(I,A1),0,...,QT. Note  mode approximation is a valid approach for the coherent
that the second half of the vector is all zero because beamZeam oscillation with symmetrical beam-beam interactions
is not kicked. On the other hand, from BE®17), but not with unsymmetrical beam-beam interactions.

(B19)
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